Job's Syndrome: **Establishing Mouse Models** for a Complex Human Disease

John P Manis M.D. Joint Program in Transfusion Medicine Children's Hospital Boston Department of Pathology Harvard Medical School

Hyper IgE Syndrome (Job's Syndrome)

First Patients were described in 1966 Classical Triad-Eosinophilia Eczema Recurrent Skin & Pulmonary Infections

1972: IgE was recognized as elevated in serum from patients

Classification expanded and in 1979 Recognition of skeletal and connective tissue abnormalities

Hyper IgE Syndrome (Job's Syndrome)

Two types of disease now recognized:

Type 1 Sporadic- more than 90% of cases Skeletal and connective tissue abnormalities Bone fractures, scoliosis Retention of deciduous teeth Hyperextensibility Pneumatocele

Type 2 Familial with autosomal recessive inheritance Viral infections (HSV, molluscum contagiosum) absence of pulmonary cysts

Hyper IgE Syndrome **Autosomal Recessive**

Described in 2004 in a group of patients that lacked skeletal defects

 Intact TCR signaling, but with recurrent viral infections and the presence of infections with intracellular pathogens (mycobacterial) suggested cytokine signaling defects: defective interferon alpha-mediated signaling defective interferon alpha-mediated signaling defective IL-12 signaling

•TYK 2 mutation found in a single patient in 2006 •Member of the JAK family kinases •Defective type 1 IFN, IL-12, IL-23, IL-10, IL-6

Immunologic (approxin	nate percent frequency)
Peak serum IgE >20	00 IU/mL (97)
Recurrent pneumonia	is (87)
Parenchymal lung ab	normalities (bronchiectasis/pneumatocoele) (70
Boils (87)	
Moderate-severe ecze	ema (95)
Newborn rash (80)	
Mucocutaneous cand	idiasis (83)
Recurrent sinusitis or	otitis (80)
Eosinophilia (90)	
Lymphoma (5)	
Somatic (approximate 4	% frequency)
Characteristic face (8	5)
Hyperextensibility (7	0)
Retained primary tee	th (70)
Minimal trauma fract	tures (65)
Scoliosis >10 degree	es (60)
Coronary vasculature	anomalies (60)
Arnold Chiari I malf	ormations (40)
Focal hyperintensities	s on brain MRI (75)

TH17 T cell differentiation is defective in patients With AD HIES Absent TH17 T cells in patients with AD-HIES Reported by multiple groups- accounts for defective immunity Infections however are primarily lung and skin Keratinocytes and bronchial epithelial cells are more dependent on TH17-mediated cytokines for function

Other T cell subsets involved? Defective antigen specific antibody production: encapsulated pathogens

TH17 T cell defect does not explain the multiple immune defects

	all HIES		HIES STAT3 wild-type		HIES STAT3 mutated	
	No.	%	No.	%	No.	%
Recurrent pneumonia	85/100	85	24/36	66.7	61/64	95.
Eczema	90/100	90	32/36	88.9	58/64	90.
Recurrent skin abscesses	86/100	86	28/36	77.8	58/64	90.
Characteristic face	82/99	82.8	24/35	68.6	58/64	90.)
Failure to shed deciduous teeth	60/86	68.9	16/31	51.6	44/55	80.
Lung cyst formation	61/97	62.9	14/34	41.2	47/63	74.
Eosinophilia	68/94	72.3	27/36	75.0	41/58	70.
Newborn rash	52/86	60.5	15/29	51.7	37/57	64.
Other unusual infections	47/94	50	13/34	38.2	34/60	56.
Increased interalar distance	37/83	44.6	10/31	32.3	27/52	51.3
Cathedral palate	41/84	48.8	12/31	38.7	29/53	54.
Hyperextensibility	37/87	42.5	8/32	25.0	29/55	52.
Pathologic bone fractures	32/94	34.0	5/35	14.3	27/59	450
Recurrent upper respiratory infections	41/92	44.6	14/33	42.4	27/59	45.3
Candidiasis	37/91	40.6	12/33	36.4	25/58	43.
Scoliosis	20/83	24.1	7/33	21.2	13/50	26.0
Midline anomaly	12/86	14.0	5/34	14.7	7/52	13.

-Stat 3 is important in maintaining ES cell pluripotency, thus mutant Stat3 cannot be expressed in targeted ES cells for germline expression

-Job's Syndrome affects many tissues, it would be useful to express the mutation in a tissue specific fashion

-Stat3 null mutant mice are embryonic lethal, heterozygous mice have no phenotype c/w Job's Syndrome

Conclusions from B cell Mouse Model

B cell numbers are unaffected- in resting unimmunized mice

DN Stat 3B cells do not intrinsically undergo increased class switching to IgE or other Isotypes (need immunization studies)

Fewer plasma cells are found in older mb-1 mice (4 months), based on immunohistochemical staining of the bone marrow

Future work: CD4 T cell specific expression Bone specific expression Skin specific expression

Summary:

AD-HIES is a heterogeneous disease- genetically and clinically not all patients have Stat 3 mutations

Most patients with Stat 3 mutations are sporadic in nature indicating importance in embryonic development

Developmental selection is severely influenced by DN-Stat 3 murine ES cells severely affected

Preliminary studies suggest no intrinsic B cell defect for class switching in context of normal T cells

Mouse models may elucidate therapeutic targets for non-immune defects Bone and skin manifestations

Acknowledgements

- Joyce Chang Mark Geyer .
- Nicole Walsh Alice Chang
- Shilpee Dutt Kate Graves

Matt Lynch Lianne Kaylor

Children's Hospital Boston

Luigi Notarangelo Francesca Rucci

•

•

.

- UT Houston
- Phil Carpenter .

Julio Morales

Harvard Medical School

Sean Rooney

- Shan Zha •
 - Klaus Rajewsky

Dana Farber Cancer Center

Margaret Shipp

Kuni Takeyama

Todd Golub Stefano Monti

MIT/Broad Institute