# Epigenetics, Evolution and Development

### Behavioral, Metabolic and Immune Implications

George P. Chrousos, University of Athens Evolution vs. Development =, The Evo-Devo Field

Phylogeny vs. Ontogeny Genetics vs. Epigenetics,

# **Genetics vs. Epigenetics**

- Complex Systems
- Evolutionary and Developmental Stressors
- Stress and Evo-Devo

"Πολλά τα δεινά κ'ουδέν ανθρώπου δεινότερον πέλλει...."

'There are many wonderful things and nothing is more wonderful than the human ... "



Σοφοκλής Sophocles 496-406 BCE Human genome:

**About 3 billion bases About 20 thousand protein-coding genes About 18 thousand ncRNA-coding genes About 100-140 thousand transcripts** (mRNA, ncRNA) **About 200-260 thousand proteins** Single nucleotide polymorphisms (snp's or snv's), microsatellites or copy number variants : About >25 million snp' s (snv' s), 1.5 million indels **About 20 million microsatellites** >5000 cnv's (many million bases) **Over 10 k disease-related mutations** 60% of promoters have CpG islands

#### HUMAN COMPLEXITY: SOME HUMAN BRAIN NUMBERS

- ~ 100 billion neurons  $(100 \times 10^{12}) \times >10.000$ synapses per neuron = >10<sup>18</sup> synapses)
- ~ 100.000 km of fibers
- ~ 1 trillion or more glial cells
- ~ 1.25 terabytes
- ~ 15 Watt lamp (2% of BW uses 20% energy)



#### Pythagoras 6th century BCE



Pythagoras= *Harmony* Alcmaeon=*Iso-nomia Walter Cannon= Homeostasis*  Stress is the State of Threatened (or Perceived Threatened) Homeostasis

## **Genetics vs. Epigenetics**

- Complex Systems
- Evolutionary and Developmental Stressors
- Stress and Evo-Devo

### Evolutionary and Developmental Stressors

- Starvation
- Dehydration/hemorrhage (gastroenteritis, trauma)
- Injurious agents (infections, toxic substances)
- Adversaries (anticipation, minimization of exposure)
- Tissue injury



Raphael, 16<sup>th</sup> Century CE





Aristotle by Lysippos 4<sup>th</sup> Century BCE

# **The Human Brain**

• Plato (Meno)

The innate preformation theory

(Genetic view)

• Aristotle

The blank state theory (Epigenetic view) **Preformation (Plato)** (unfolding of preformed tissues)

Epigenesis (Aristotle) (Embryology, Development)



### Jean-Baptiste Lamarck (1744–1829)



Charles Robert Darwin (12 February 1809 – 19 April 1882))

# **Modern definitions**

*"Epigenetics are the causal interactions between genes and their products which bring the phenotype into being"* 1942

**Conrad H Waddington 1900-1975** The Strategy of Genes, MacMillan 1957

#### "The Epigenetic Landscape"



Conrad H Waddington 1900-1975

### **Modern definitions**

"Genetics proposes; Epigenetics disposes"

Medawar and Medawar 1983







Cytosine

**5-Methylcytosine** 





#### **Acetyl-lysine**



Lysine

### **Forms of Inheritance**

Genetic (blueprint)
Structural
Steady state
Epigenetic
Behavioral/Symbolic (memes)

# Components of Epigenetic Processes

- Covalent bonds on DNA
- Post-translational modification of proteins

• DNA-binding proteins or complexes (Polycomb/Trithorax complexes (-/+ hox genes), Panoramix complex – other genes

• miRNAs, other ncRNAs

### **Epigenetic Mechanisms**

DNA Methylation/demethylation, Acetylation/deacetylation

### **Covalent histone modifications**

(methylation, acetylation, phosphorylation, polyADPribosylation)

Methyl-CpG domain-binding proteins
 Chromatin compacting or unwinding complexes (polycomb, trithorax groups)





#### **Gene Silencing**

**Gene Activation** 





### **Epigenetic Functions**

- Cell differentiation
- Genomic imprinting
- X-chromosome inactivation
- Retrotransposon repression
- Puberty
- Sexual orientation
- Right/left handedness
- Labor and delivery
- Immune cell differentiation



Oligodendrocyte Precursor/Oligodendrocyte

### **Genetic Imprinting**







Source of chromosome 11 Both copies from mother: Mouse smaller than normal One copy from each parent: Normal mouse Both copies from father: Mouse larger than normal



Decreased DNA methylation leads to higher expression of glucocorticoid receptor Histone acetylation creates a more relaxed chromatin environment. DNA methylation is removed HAT binds to glucocorticoid receptor gene and adds acetyl groups to histone proteins
# 'Stressing' the epigenome: glucocorticoids



# Malnourished in FIRST trimester

Mary

Baby normal birthweight/MS

Baby likely to be heavier than average/ MS Helen

Nikolas

Baby reduced birthweight/MS

**Malnourished in** 

**THIRD trimester** 

Vicky

Baby normal birthweight/ no MS Kelly

George



#### **US Surgeon General's Report**

Amount of genome coding for protein in millions of basepairs

Percentage of genome that doesn't code for protein



# Epigenetics of Retrotransposons (piRNAs)

40-60% of genome of retroviral origin
 10% of genome Alu repeats
 10,000 HERV-K retrotransposons
 5,000 SVA retrotransposons



:ative unrooted Pol neighbor joining (NJ) dendrogram

# **Genetics vs. Epigenetics**

- Complex Systems –Stress Concepts
- Evolutionary and Developmental Stressors
- Stress and Evo-Devo

Genotype + Environment = Phenotype/Disease Phenotype

Epigenetic control mechanisms evolve

There is a Lamarckian dimension in evolution

Imprints and methylation marks are erased and reestablished de novo stochastically in each generation

# Epigenetic Regulation of Pediatric "Endocrine"-related Genes

GRalpha, hippocampus, NGF-IP (stress, sexual abuse) **GRalpha**, liver (obesity) **PPARalpha**, liver (obesity) Pdx1, islets of Langerhans (diabetes mellitus type 2) ERalpha, hypothalamus (female behavior) **AR** brain (male behavior), skin (hirsutism) FTO (obesity) -> IRX3 homeobox transcription factor Nanog, Oct 4 (neural stem cell differentiation) **DLK1-MEG3** (obesity, diabetes type 1) Lxralpha (obesity, carbohydrate intolerance) **Kisspeptin**-puberty **CRH-** labor and delivery **FKBP5-Depression Rx** 

# Human endogenous retroviral element K10 (HERV-K10) is altered in *in vitro* handled blastocysts

# Decreases methylation of the imprinted DLK1-MEG3 gene region on chromosome 14q32.2.

Dimitriadou et al., Stress 2013

# Venus Callipyge

# Callipyge sheep



# $) \mid \overline{\mathsf{TM}} \mid \underline{} := ( \lfloor \downarrow \Box ] \otimes \overline{} )$











# Systolic and Diastolic Blood Pressure-SDS



# Results Comparison between SGA-IVF, AGA-IVF and controls



Sakka et al. Fertility Sterility 2010

# Triglycerides



Sakka et al. Fertility Sterility 2010





| Parameters            | Control<br>N=42 | ICSI<br>N=42 | Difference |
|-----------------------|-----------------|--------------|------------|
| Glucose (mg/dL)       | 83.7± 9.3       | 81±7.7       | 0.36       |
| Insulin (mU/L)        | 6.9± 6.7        | 5.5± 2.5     | 0.9        |
| HOMA index            | 1.5± 1.8        | 1.1±0.5      | 0.9        |
| Total Chol (mg/dL)    | 172.7±24.5      | 167.7±25.3   | 0.35       |
| Triglycerides (mg/dL) | 54.2±22.6       | 45.4± 16.5   | 0.07       |
| HDL-C (mg/dL)         | 60.8±12         | 63.9±8.9     | 0.17       |
| LDL-C (mg/dL)         | 100.9±22        | 94.6± 21.2   | 0.18       |
| ApoAl (mg/dL)         | 156.1±19.8      | 153±21.1     | 0.5        |
| ApoB (mg/dL)          | 74.2± 14.9      | 75.7±14.7    | 0.65       |
| Lp(a) (mg/dL)         | 15.4± 20.3      | 11.8± 14.8   | 0.16       |
| IGF-1 (ng/mL)         | 190.5±92.5      | 193.2± 115.3 | 0.58       |
| YKL-40 (ng/mL)        | 27.08±15.5      | 15.45± 8.9   | 0.0002     |
| hs-IL6 (pg/mL)        | 1.6± 1.5        | 2.3±4        | 0.38       |
| hs-CRP (mg/L)         | 0.78± 0.87      | 0.44±0.3     | 0.022      |

#### Gkourogianni et al. PLoS One 2015



Gkourogianni et al. PLoS One 2015



#### Gkourogianni et al. PLoS One 2015



### **EPIGENETICS AND SEPARATION**



Champagne FA. Behavioral Neuroscience 2013; 127(5): 628–636

# EPIGENETICS AND CHILDHOOD ABUSE -

# Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse

Patrick O McGowan<sup>1,2</sup>, Aya Sasaki<sup>1,2</sup>, Ana C D'Alessio<sup>3</sup>, Sergiy Dymov<sup>3</sup>, Benoit Labonté<sup>1,4</sup>, Moshe Szyf<sup>2,3</sup>, Gustavo Turecki<sup>1,4</sup> & Michael J Meaney<sup>1,2,5</sup>



McGoan PO et al. Nature Neuroscience 2009; 12(3): 342-348

Increased methylation of glucocorticoid receptor gene (*NR3C1*) in adults with a history of childhood maltreatment: a link with the severity and type of trauma

N Perroud<sup>1</sup>, A Paoloni-Giacobino<sup>2</sup>, P Prada<sup>3</sup>, E Olié<sup>4,5,6</sup>, A Salzmann<sup>1</sup>, R Nicastro<sup>3</sup>, S Guillaume<sup>4,5,6</sup>, D Mouthon<sup>2</sup>, C Stouder<sup>2</sup>, K Dieben<sup>3</sup>, P Huguelet<sup>3</sup>, P Courtet<sup>4,5,6</sup> and A Malafosse<sup>1,2</sup>



Perroud N et al. Transl Psychiatry 2011; (1): e59.



Binder Nat. Genet. 2004, Klengel Nat Neurosc., 2013, Menke et al,. Genes, Brain and Behavior 2013, Scharf et al, PLOSone 2011, Zannas et al. 2015

#### FKBP5 disinhibition by gene-environment-epigenetic interactions



Zannas & Binder 2014

# Epigenome

 CpG islands in 60% of gene promoters
 25% of methylation in stem cells is in non-CpG context
 Global demethylation of the trophoblast
 Global demethylation in aging
 Global demethylation in cancer

# Epigenome

Preimplantation: Methylome erasure Paternal first, maternal ensues Remethylation: Morula-Blastocyst Inner cell mass: hypermethylation Trophoblast: hypomethylation **Gametogenesis:** epigenetic reprogramming/ erasure-remethylation

#### **Blastulation:** 1 - morula, 2 - blastula.



- Oocyte to 2 cells 32 genes
- Two to 4 cells 129 genes

Tohonen et al. Nat Comm 2015







# **ENVIRONMENTAL STRESSORS**

Starvation Dehydration Injurious agents-inflammations Adversaries-anticipation Adversaries-avoidance Injury-minimization

Maternal Stress, Embryogenesis

# Species vs. Individual Evolution Development Genetics Development CNS complexity CNS plasticity Genotype Epigenotype

Phenotype



DECEMBER 13TH-19TH 2003

Gore anoints Dean

America's Taiwan test

The future of flight

A SURVEY OF FOOD

# The shape of things to come

www.economist.com



#### Selections of Gene and Epigenetic Networks Participating in Functions Important for Human Survival and Species Preservation

**RESPONSE TO SURVIVAL THREAT SELECTIVE ADVANTAGE** 

**CONTEMPORARY DISEASE** 

| Combat starvation            |
|------------------------------|
| Combat dehydration           |
| Combat injurious agents      |
| Anticipate adversaries       |
| Minimize exposure to dange   |
| Prevent tissue strain/damage |

Energy conservation Fluid and electrolyte conserve Potent immune reaction Arousal/fear Withdrawal Retain tissue integrity Obesity/metabolic syndrome Hypertension Autoimmunity/Allergy Anxiety/insomnia Depression Pain and fatigue syndromes

Chrousos, Amer J Med 2004



## Adulthood


#### 'ENIKTHTOY ΈΓΧΕΙΡΙΔΙΟΝ. EPICTETI ENCHIRIDION.

KEA. d.

<sup>2</sup> Tribultur hoc Enchisidion Epi-deco, quamvis ipfe id non fcri. Enchisidion inferibitar compasite, de-ferite, fed Actinans, qui de uberiorem lettir es Epilleti difputationibus phi-in id commentatium edidie, quo dif-lofisphie, lecis maxime idanes as escefin id commencatium edidit, quo dif-purationes Epideni pienius profequi-sione commentarii ad hunc libelium hilfe verbis το 3 βιδλίον τών στ Εππιίταν το διάτη pagio Gracis hos nomine vocaur, fed etiam quid-montave i loge door inny gaza-pieno commentarii ad hos inny commence pagio service advise substance professione vocaur, fed etiam quid-apienos nu successing a dors a substance of the service advised and ad manum eft. & in ulam promptum & obvium, ut infru-menta qualiber a vali sprogedon, menta qualiber a vali sprogedon, and the service of the service of the service and the service of the service of the service set and the service of the

CAP. I. έφ ημίν. \* έφ' In noftra poteftate eft opi-ivi Noya, " ou querres plectar verbo, qualibet έρρα. 7 con έφ' ήμων de, 70 noftra actiones. Noftri Capa, " n' ziñois, dogay, arbitrii non funt corpus, λεχαί. ż ένι λόγω, όσε pecunia, gloria, imperia: żχ ήμέπεμ έρχα. non agimus, omnia.

Par.

 $\Box \subseteq \rightleftharpoons \Sigma / \langle \Gamma | \widehat{\Omega} / \langle G | \langle \Box | \widehat{\Omega} / \Sigma / \langle \Box | \langle \Box | \widehat{\Omega} / \Sigma / \langle \Box | \langle \Box | \widehat{\Omega} / \Sigma / \langle \Box | \widehat{\Omega} / \langle \Box | \widehat{\Omega} / \Sigma / \langle \Box | \widehat{\Omega} / \langle$ 

'Be equanimous and remember not to believe easily'



### A yellow mother only gives birth to yellow or lightly colored pups A<sup>vy</sup> unmethylated A<sup>vy</sup> unmethylated Inserted retrotransposon expresses an abnormal RNA and agouti is switched on permanently Avy unmethylated Yellow hair

A dark mother gives birth to yellow, lightly colored and dark pups





Hypothesis: ncRNA represses expression of target gene Prediction: Decreasing levels of ncRNA leads to increased expression of target gene Actual outcome: Decreasing levels of ncRNA leads to decreased expression of target gene



LIN-14 mRNA is translated into protein

Second larval stage

Binding of Lin-4 ncRNA to 3' UTR of LIN-14 mRNA prevents translation of protein

Region of LIN-14 mRNA that gets translated into protein

Region of LIN-14 mRNA that DOES NOT get translated into protein = 3' untranslated region = 3' UTR













### **Acetyl-Lysine**



Lysine

Amount of genome coding for protein in millions of basepairs

Percentage of genome that doesn't code for protein



#### **ENVIRONMENTAL STRESSORS**

#### **GENETIC MACHINERY**



Epigenetics at the Early Stages of Childhood Evo Devo: Genetics vs. Epigenetics

> George P. Chrousos, MD, University of Athens, Athens, Greece

> > (No Disclosures)

# Early Embryon





**Blastulation:** 1 - morula, 2 - blastula.

## Choanoflagellatess





## **Tandem Zinc Finger Proteins**

